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An adjoint Green's function approach to model instabilities in a duct with mean
flow
Maria Heckl, 5 June 2023

Notation
c : speed of sound

g : direct Green's function

G : adjoint Green's function
H: Heaviside function

k., Kk_:wave numbers

n : mode number

q(t) : measure for the fluctuating part of the global heat release rate (per unit volume)
Rq.R_ : pressure reflection coefficients

t : observer time
t': source time (t in Jiasen's notation)

T, : terminal time

u : speed of the mean flow
X : observer point

X': source point (§ in Jiasen's notation)

vy : specific heat ratio

¢ : fluctuating part of the velocity potential
¢g : initial value of the velocity potential
¢'g: initial value of the acoustic pressure
p: mean density

®: angular frequency

time-dependence for the direct problem: g ot

05/06/2023



Starting point
We consider a duct with ends at x =0 and x =L, described by pressure reflection

coefficients Ry and R, respectively (see figure 1). The speed of the flow is u, and the
speed of sound is ¢. The Mach number M =u/c is assumed to be smaller than 1. The

setup is treated as 1-D.

R 0 AN avaVe \ R L

| O A | o e

0 Xq L X

Figure 1. Schematic illustration of a flow duct with compact unsteady heat source at Xq

PDE:
%0 % (2 2y0% _ y-1
at_2+2u@_(c —-u )ax_z—_?q(t)s(x_xq) (1)
initial conditions:
$(X,1)] =0 = 9o (X — Xq) (2a)
op _0ob o B

The boundary conditions are given in the frequency-domain by Ry(o), R ().

Our time-dependence is e ot
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Step 1: Determine the characteristic equation and the wave numbers

Results (see Appendix for Step 1):

characteristic equation:  (c2 —?) k2 + 200k —©? =0 (3)
wave numbers: K, =kj=——, k_=-ky=—2" (4a,b)
C+0 c-0

Step 2: Acoustic field in the frequency-domain

Results (see Appendix for Step 2)

Hx0) A_(Rg elkeX 4 gmkX upstream of the heat source 5)
X, ®) = _ :
B, (e*+**"D) L R e7*-(X"L)y downstream of the heat source
Step 3: Try out the adjoint approach
Result (see Appendix for Step 3)
Ts L 2
[ % 2aaG —(c?- _)ac; O(x",t)dx " dt '+
t—0 x'=0 | Ot ot'ox’ ox 2
L
od _ 0d oG 3G ,
+ G(—+u—)-d(— dx '+
X.I: { (6'[' 6X') d)(@t' )}
=BT1
% a¢ oG 2 ¢ .
+ ] IG T -9—2) - (" -T)G ¢—) dt'=
t'=0 ot x'=0
=BT2
1T
=—— | G(xq,x,t"t)q(t)dt’ (6)

P oo
At this stage, G(x',x,t',t) is a test function, and T, is a terminal time. Both are yet to be

determined.
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Step 4: Define the test function G (as far as possible)

We define the test function G(x',x,t",t) in such a way that equation (6) becomes as
simple as possible and gives an integral equation for the acoustic field ¢(x,t).

Results (see Appendix for Step 4):

PDE:
2

S ~(e?- ‘)GG—S(x—x)a(t—t) 7)
ot '2 61: ox' ox'

terminal conditions:
G(x',x,t't)=0 att'=T, (8a)
%G gL g at-T, (8b)
at ox'

We call G(x',x,t",t) the "adjoint Green's function”, following the notation of [Morse and

Feshbach 1953, section 7.5] (rather than that of [Greenberg 1978, section 22.5], which is
out of line with all the literature on Green's functions known to me).

The remaining terms of (6) are:

<|>(xt)——— j G(%g, Xt t)q(t)dt{(poe(x X,t't)— cpo(§+ﬁa—elﬂ . +BT2.
P -0 X X'=Xq

9)

G(x',x,t',t) is not fully defined at this stage, because the boundary conditions have not

been specified yet.
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Step 5: Consider the direct Green's function g(x,x',t,t') and calculate it
g(x,x"t,t")is defined as the impulse response of the flow duct and has been calculated
in the Appendix for Step 5.The impulse is fired at time t' from a hypothetical point
source at x'. The response is measured by an observer at location x and time t. The
measured response does not depend on t or t' individually, but on the time lapsed
since the impulse, t —t".

PDE in the time-domain:

2 2 2
09 5599 (2 _g2) L9 _ 5 —x)s(t—t) (10)
ot otox ox2

causality conditions:
g(x,x,t—t)=0 fort<t' (11a)
a—g+Ua—g:O fort<t’ (11b)
ot OX

PDE in the frequency domain:

~ A

cozgj(x,x',m)+217icoa—g+(cz—Uz)a—g:—S(x—x') (12)
OX ox?

boundary conditions (given in the frequency domain):

i® i®
—X ———QX
near x=0: g(x,x",®)=A_(X,0)[Rpectu +e Cc-U ] (13a)
” ii_(x—L) —ii_(x—L)
near x=L: g(X,x',0)=B,(X,w)[ecu +R e ¢-u ] (13b)
g and g are a Fourier transform pair:
g(x,x',t—t'):zi [ §(xx 0 ™ de (14a)
T oo
§ox,x,o0)= [ g(xxt-t)e gt (14b)

t=—00

Result for g(x,x",t,t") (see Appendix for Step 5)

g(x,x" t—t)=H(t-t)Y Re Me—iwn(t—t') (15)
n=1 onF (o)
where
6
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and

y(X',0,)b(X" o,)a(X,0,) for x<x'

gn(x,x',mn):{

y(X' o4)a(x',o,)b(X,0,) for x>x'

2cL
2_g2

im
F(o)=-1+RgR e -0,

a(x,0) = Ro €'+ e,

b(x,) = e (<L) R e 0c-L)
1 ik, —k_)x ok, L

W(X@):—Ee (ki —k)x gk, L

(16)

(17a)
(17b)

(17¢)

(18)

The Heaviside H(t —t") function in (15) expresses the causality of the Green's function:

0 for t<t’', i.e.beforetheimpulse
H(t-t")=

1 for t>t', i.e.after theimpulse

05/06/2023

(19)



Step 6: Determine the adjoint of the frequency-domain Green's function g(x,x"',®)

Results (see Appendix for Step 6):
PDE:

A A

R 2
W2G(x, X" 0) - 2Tio0 2 + (¢ -72) L8 - _5x—x*)
oX ox2

boundary conditions:

i 10}
X -

. — -——X
A A (X", o)[Rget U +e C+u ] near x=0
G(x,x' ) = _ .

3 10 L ~ 19 (x-L)

B, (X', »)[ecY +R e c¢tu ] near x=L

Step 7: Find the relationship between G(x',x,t',t) and é(x',x,m)
Result (see Appendix for Step 7):

sttt T Goenme tOm,
7T

W=—0

I.e. they are a Fourier transform pair.

Step 8: Show that the boundary term BT2 in Step 3 is zero
The calculations are given in Appendix for Step 8 and confirm that
BT2=0.

Step 9: Find the relationship between G(x,x't,t") and g(x,x"',\t—t"
Result (see Appendix for Step 9):
G(x',x,t't)=g(x,x',t,t".

This can be interpreted as a generalised reciprocity theorem.
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Step 10: Give the full result for the adjoint Green's function G(x,x',t,t")
Since we have calculated g(x,x',t —t") in Step 5, we obtain G(x,x",t,t") simply by

swapping over the variables in (15). This gives

GOt ) =H(t'—1) 3 Re{we"mn(t B (25)
n=0 F ( n)
where
X, o) )b(X,04)a(x',o,) for x'<x
g (X', X, ) = Y (X, 0n)b(x, 0n)a( n) (26)
y(X,0p)a(X,0,)b(X"0,) for x'>x
and
i 2cL
F(w)=-1+RyR e ¢-0° (27a)
a(x,m) = Ry &KX + e KX, (27b)
b(x,0) = ks D R e k-x-L) (27¢)
y(x o) = =e KTk Ixg kil (28)

The Heaviside function H(t'-t) in (25) expresses the anti-causality (also called
causality in reverse time) of the adjoint Green's function:
for t<t', i.e.before theimpulse

H(t'—t) = {1 (29)
o

for t>t’', i.e.after theimpulse

Step 11: Fix the terminal time T, and give the final version of the integral equation
Results (see Appendix for Step 11):

The only meaningful choice is T, =t.

integral equation:

—

o(X, t)—— j gt t)q(t)dt{@oG(x x,t't)— ¢0(§+6Eﬂ _ (30)
2 ' ox!
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Appendix for Step 1: Determine the characteristic equation and the wave numbers
We consider the duct shown in Figure 1 without the heat source, i.e. we solve the
homogeneous version of Eq. (1) for the acoustic velocity potential ¢(x,t),

029

2 2
90 o 00 (2 _g2) 0 o (1.1)
ot? Otox ox?

The frequency-domain equivalent of (1.1) for the velocity potential (T)(X,(D) IS (assuming a

time-dependence e '®!)

23+ 27(ie) 2 4 (c? —52) 20
m<|>+2u(|m)6x+(c u)axz_o. (1.2)

We solve this with the trial solution

(T)_q)eikx @—ik ikx _ .2 8_2(13__2 ikx _ 2%
=0, =ik ¢ge™" =ik ¢, > = K dge™" =—k¢. (1.3a,b,c)
oX OX
Substitution into (1.2) gives
(c?-02) k2 + 200k —-0? =0. (1.4)
This is a quadratic equation for k , which has solutions
ot 4i%e? +402(c2-02)  —g+c o0
klz = > o = > 2 = — — (15)
2(c?-u?) c“-u (c+u)(c-u)
or
PR S G (1.6a,b)
c+u c-u
We introduce the notation
kK, =kq = — (wave number of wave travelling with the flow), (1.7a)
c+u
ko =-ky, = % (wave number of wave travelling against the flow). (1.7b)

10
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Appendix for Step 2: Acoustic field in the frequency-domain
The acoustic velocity potential in the flow-duct can be written as a superposition of a

forward and backward travelling waves, with wave numbers given by (1.7a,b),
. A ek X 4 A gTTkX upstream of the heat source
d(X, ) = (2.1)

B, L) B e ("L} downstream of the heat source

where A_, A_, B, and B_ are (generally complex) amplitudes of the velocity potential.

Y a W \ A+
R 0

e~~~ A_

B+ Ve e \

B_ NN

Py,
e

0 Xq L X

Figure 2.1: Schematic illustration of a flow duct with mean velocity u, acoustic waves

with amplitudes A,, A_, B,, B_, and an unsteady heat source at x,

The waves are reflected at the tube ends with reflection coefficients Ry and R, .

At x =0, we have

ik X
Ry =& —~ A, =ARy. 2.2)
A e—lk_X
- x=0
At x =L, we have
—ik_(x-L)
R, =% —~ B_=B,R, . (2.3)
B,e™ x=L
We can then write for (2.1)
- A _(Ry e+ 4 kX upstream of the heat source
o(x) = (2.4)

B, (e*+*"D L R e *-("L)y downstream of the heat source

11
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Appendix for Step 3: Try out the adjoint approach
We consider the governing PDE (1) for the acoustic field ¢(x,t), write it in terms of the

variables x',t', multiply it by a test function G(x',x,t",t) (yet to be defined), integrate

T? L

[ [ ...G(x'xtt)...dx"dt", and rewrite with integration by parts.
t'=0 x'=0

This leads to (see Appendix A in [Wei et al 2023])

T, L 2 2 2
[ {Q§§_+2— 5f3,—(cz-Jz)fzﬁg}qxx;tvdx'dr+
t'=0 x'=0 | Ot Ot'OX OxX
L T
] [e@ialy Ceald| " o
X'=0 ot OX ot oX" ] t'=0
=BT1
Tr L
- [U(Ga—d’.— a—?)—(cz—az)(eﬁ".wa—?)} dt’ =
t'—0 ot ot OX oX" | x'=0
=BT2
1 T
:-1%— [ G(xg.x.t gt)dt (3.1)
t'=0

At this stage, T, is an unspecified "terminal time", which will be determined in Step 11..

12
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Appendix for Step 4: Define the test function G (as far as possible)
We define the test function G(x',x,t",t) in such a way that equation (6) becomes as
simple as possible and gives an integral equation for the acoustic field ¢(x,t).

If G(x,x',t,t") satisfies the PDE:

o°G
+2u
ot 2 at a '

—(c? _2)——8(x X)3(t'~t), (4.1)

then the first integral in (6) reduces to ¢(x,t). If we further impose the terminal conditions

G(x'\x,t,t)=0 att'=T,, (4.2a)
%G UE—O att'=T, , (4.2b)
o ox'

then the terms at t' =T, in BT1 in (6) vanish,

Joiu ) o0 foliul o@E.aS) -
BTl_Lci(at' —)- ¢( )L:T? {G(at'wax') ¢(6t' )} L 0

- =0 (4.3)

We can rewrite the remaining terms in BT1 with the initial conditions (2a,b) for ¢ to get
BTl=- {(p'o o(x'— Xq )G(X', Xt 1) — g 6(X ' xq) (% _ﬁ)} (4.4)
t'=0
The integral of BT1 in (6) then becomes

L
[ BTldx=
x'=0

; _0G
=— | I:(p 0 8(X'=Xg)G(X", X,t',t) — g 8(X "= Xq) (—+ —)} dx' =
X'= t'=0

—[cp'oe(x',x,t',o—cpo (& v ‘Eﬂ (4.5)
q

Eqg. (6) reduces with (4.1) and (4.5) to

?

G(xq,x,t LHq(t)dt!

W — -

o(x,t) = {‘P 0 G(X'\ Xt t) - g (—+_§)} +BT2- Y71
=Xq

P oo

(4.6)

13
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Appendix for Step 5: Consider the direct Green's function g and calculate it
Appendix 5.1: Calculation of the eigenfrequencies in the flow duct

We consider the flow duct without any source, so instead of (5), we can write

d(x,0) = A, e 4 A g7k-X (5.1)
for the velocity potential anywhere in the duct.
The waves are reflected at the tube ends with reflection coefficients Ry and R, .

At x =0, we have

ik X
Ry =& —~ A, =AR,. (5.2)
A e—lk_X 0
g "
At x =L, we have
A —-ik_x . .
R =% — A =AR ekl (5.3)
L7 A oKX +L
+ x=L

Egs. (5.2) and (5.3) can be written as a homogeneous matrix equation for the amplitudes
A, and A_,

1 Ry I[A.] [0
| = | 5.4
Ree®tkIl 1 A u &4

The determinant of the 2x2 matrix in (5.4) must be zero, and this leads to the

characteristic equation

1 Ry

0= = —1+RgR 'K+ I (5.5)

R ek HOL g

The wave numbers k, +Kk_ can be expressed in terms of the frequency with (1.7a, b),

K, +k_ = (o_+ co_zco(c—UZ—i-co(C_-l-U) __2ac . (5.6)
c+U c-0 (c+0)(c—0) c2_g?
(5.5) can now be written as
F(o)=0, (5.7a)
with
., 2L
F(w)=-1+RyR e ¢ -0, (5.7b)

The solution of (5.7) gives the eigenfrequencies oy, ®,, ...

14
05/06/2023



Appendix 5.2: Calculation of the frequency-domain Green's function

We consider the same flow-duct as in Figure 1, but instead of a heat source at Xq there

is a hypothetical point source at x' (see figure 5.1).

T 5

1 N

~~~a A, ! By ~~n Y
e~~~ A. . B. e~~~ e

: o

o

o

5 C C < #
X =

Figure 5.1: Flow-duct with hypothetical point source at x'.

The time-domain Green's function, denoted by g(x,x',t,t"), is the response (measured by
an observer at point x and time t) to a point source at x' firing an impulsive signal at time
t'. Given this physical meaning, we can conclude that g does not depend on t or t'
individually, but only on the difference t —t', i.e. the time lapsed since the impulse. We can

therefore write its functional dependence as g(x,x',t —t"). Its governing equation is

2 2 2
99 o599 _(c2-52) %9 _5(x - xYs(t—t). (5.8)
ot otox ox2

We introduce the Fourier transform of g(x,x',t —t'), denoted by ¢(x,x',0),and given by

g X"t —t) = Zi [ G0ox0)e @ de. (5.9)

W=—00

Similarly, we write for the delta function [Dowling and Ffowcs Williams 1983]

S(t—t") = Zi [ dwe ™ de, (5.10a)
T oo
and
§(0)=1. (5.10b)
By applying the Fourier transform to (5.8), we obtain the governing equation for g(x,x", ),
A 2 A
026 (%, x"0) + 20 (i) D + (2 -72) 29 = _5(x - x). (5.11)
OX ox2
We use as trial solution for (5.11)
A, (X', )e* X+ A_(x',m)e KX for x <x'

g(x,x",m) = (5.12)

B, (x',0)e+* ViB (x'0)e ™1 for x>x

15
05/06/2023



A_, A_, B, and B_ are four "velocity potential amplitudes" (they depend on the source

position x') that are to be determined. By applying the boundary conditions at the tube
ends,

X

0: A, =RyA_ (5.13a)

X=L: B_. =R/ B, (5.13b)

we can eliminate two of the amplitudes and rewrite (5.12) as

a(x,m)

A_(x',m)[RO ey e_”‘*X} for x <x'
g(x,x",m) = " N (5.14)
B+(x',m)[e' +XLL R e *(X’L)} for x>x'

b(x,)
We introduce the abbreviations a(x,®) and b(x,®) as indicated in (5.14) above.
A_ and B, will now be determined in such a way that the governing equation (5.11) is

satisfied. To this end, we write (5.14) in terms of the Heaviside function,

G(x, X", ®) = H(x'= X)A_(x ',@)[RO elkix g gikx } FH(X - x)B, (x ',m)[e‘k+(X‘L)+ R, e‘”‘—(X‘L)}

(5.15)
and differentiate, using
M=8(x—x') and M:—S(x—x'). (5.16a,b)
OX OX
This gives
9 _ —8(x —x")A_ [RO elex'y e_ikfx'} +H(X'-x)A_ [ik+R0 ek _jk_ e kX J +
OX
s x9B, [ 0D R e WD -0, [ik, ek DR e 1]
(5.17a)
4 .. . ik, x', ik x’ aa [ ko' oikox
aX—Z:—S(x—x)A_[ROe  +e J—S(X—X)A_[Ik+Roe " —ik_e }+

+H(X'=x)A_ [—kfRo eleX_ 2 gikx J +
+8/(x—x)B, | XL R e M0 g x B, ik, @M D ik R e KO0 [

+H(x -x"B, [—kf ek (x=L) _ K2R, e—ik_(x—L)J
(5.17b)
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This is substituted into (5.11),

HO-x) {o? A [R)ﬁ“‘é ¥ |+ 2ioA. [iw— k_e ]+

+(c2-u?)A [Mﬂ— k2 e"“}} ;

H(x - x)]{ V{ L) 1 20i0B, my?/ ik R/)—/(X L)
2)B [ k2/|k¢((L) kV./(X L)}

8(X — X '){ZUio)(—A_)[RO kX' e-“ﬁX'] 1 2TioB, [eimx'—L) iR, e—ik,(x'—L)] N
(c?- Uz)(—A_)[ik+Ro ek ik e‘”‘fx'} +(c?-u?)B, [ik+ ek D ik R, e“k—(x'—ﬂ} .

8'(x — X ‘){(c2 u?)(-A )[R0 g kX ]+ (c?-u?)B, [eik+(x'_L)+ R, e_ikf(x'_")}} =-3(x —Xx")
(5.18)
A number of terms cancel (this is indicated by the coloured lines) because k, and k_
satisfy
(c? -T?)k? + 200k, —0? =0, (5.19a)
(c2-0?)k? - 20wk_—w? =0, (5.19b)

(this is a consequence of (3) and (4)). The remaining part of (5.18) is

8( — X '){—ZUimA_ [Ro elkex'y e—‘k—x'} ~(c?-u?)A [ikﬁo ek e—”‘—X'J N
+ 2TiwB, [e”ﬁ(x'*h R, e K- L)} (c2-a2)B, [ik+ D ik R, e*‘kf(x'*”]} n
8'(x —x '){—(c2 ~u?) A [RO e X'y e_ik—xl +(c?-u?)B, [eik+(x'_")+ R, e_ik—(xl_")}} = -3(x —x)
(5.20)

We simplify the blue term (T, ) and the pink term (Tg) in (5.20). For T, we get
Ty=A {Ro ek’ [-26@- (c2-d?) ikJ +e kX [—2aiw+ (c2-a?) ik_}} -

ki[zlimh+(02—Uz)kﬂ+e_ik‘x i [ZUmk (c 2) kf}}

+

A {RO elkex

(5.21)

With (5.19a, b), the green and the red terms reduce to +m, SO

. 2 , 2
T.=A IR e|k+x'60__e—|k_x'(0_ _
A ‘{ 7 ik ik_

K,

A {Ro %X i) (c +T) - e KX (<im)(c - U)} . (5.22)
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In the last step, (4a,b) were used. For Ty in (5.20) we get

Tg =B, {e”‘+(x'—L) [25@ +(c2-a?) ik& +R, e k(1) [ZUim +(c2-a?) (—ik_)}} -

-B, {e‘k+(x"L) _i[—zamk+ ~(c2-T?) kf] +R, e k(1) %[—ZUmk +(c?-?) kz]}

ik, ik
(5.23)
Again, with (5.19a, b), the green and the red terms reduce to T0?, SO
o 2 o 2
Ty =B _e|k+(x -L) 60_+ R, e—lk_(X -Lo | _
M ik, ik_
-B, {-e”‘+(x'—L)(—im)(c L)+ R, e D g - J)} . (5.24)

Then (5.20) becomes
5(X — X '){A_ [RO %X Ciw)(c +T) — e KX (Cim)(c - J)} +

+B, [—eik+(x'_")(—iw)(c +)+ R, e "D ig)(c - U)}} +
8'(x — X ‘){—A_(c2 ~T?) [Ro X'y e_ik-xl +B,(c? - GZ)[eik+(X'_")+ R, e_ik-(xl_")}} = —3(x —x")

(5.25)
By comparing the coefficients of 3(x —x") and 3'(x —x"), we obtain the following two

equations

A,(—ico)[Ro M X' crim)—e ™ (c- U)} N B+(—im)[—e“‘+(x"”(c 1)+ R e Do U)} -1
A_(c? -?) [—Ro elkex'_ e“k—x'} +B,(c2- UZ)[eik+(X'_L)+ R, e‘”‘—(x"L)} ~0. (5.26a,b)
Thisisa 2x2 set of linear equations for A_ and B, , with determinant

(—im)[RO ek (crny—e* X' (c - U)} (—im)[—ei"+‘x"”(c 1)+ R e Do U)}

det =
R, olkiX'_ gtk X' ek (x'-L) | R, etk (x'-L)
(5.27)
We abbreviate the matrix elements so that the determinant can be written as
di; dpp
det = = d11d22 - d12d21 (528)
dy; dpp

and calculated.
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dy1dz7 = (o) Ry ¥ (e + ) e (¢ - |( M+ XD+ R o0 D)) -

= (_iw)[W -~ RLe_y"/(c—U) +RyR. ek X' kD) (¢ | 1) — g KX e (X L) (o LT)}

(5.29a)

dipdpg = (—iw)[—eimxl_l')(C +)+R, e KD LT)}(—RO el X' e‘ikfx') =

= (-io) [W) - R%) ~RoR, ¥ e * - ¢y 4 e H XM X (¢ 4 LT)}
(5.29b)

The terms marked by the blue and green lines cancel, and d;;d,, —d;,d,; becomes
dy10py —dppdny = (—im)[RORL kX' e k("D 4 gy — e kXX L) gy 4
+RoR, e e k-(<L)(c iy _ gk X gk (XL c U)J _
- (—im){RORL gk X g ik-(x-L) [c+m)+(c-W)]+ g KX gl (X-L) [-(c-U)-(c+ U)]} =
_ (—im){RORL ok X' gk X' gik L (2c)+ ok X' gik X" g ik, L (—Zc)} _

= (-iw) {Zc otk X' gk x' g -ik, L [RORL olkiLaik L _ 1}} _

2cL
2% _q), (5.30)

i®
C

= (-iw)2c et KX gL (RR e

=F(w) (see (5.7b))
In the last step, we used (5.6) to combine the exponential functions in the square

brackets.

The linear equations (5.26) can now be solved for A_ and B, .

A = %, B, :%, (5.31a, b)
where

-1 dyp . , . .

det, = . = —d,, = —e LR g7k-(x*-L) (5.32a)
22

dll —1 . ' . .

detB = d = d21 = —RO e|k+X — e—lk_X (5.32b)
21
19
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For A_ we get

_ ek (x-L) _ R, ok (x'-L)

A_ = T : - =
(-iw)2c et KX gL ()
_ -1 ik, k)X gk, L [ gk (x-L) , o gk (x'L) 533
- 2CF(co)(—ico)e ¢ [e e } (5.333)

=b(x", @) (see (5.14))

For B, we get

5 _ “Ry eik+x‘_ e—ik_x' ~
(-iw)2c ek kX gkl )

+

-1 —i(k, —k_)x"' ik, L ik, x' L—-ik_x'
— e + et R et +e . 533b
2cF (w)(—io) [ 0 J ( )

=a(x',») (see (5.14))

Altogether, we get with (5.14) for the Green's function

W)l(_im)ei(mk)x'eimL b(x o)ax.0) for x <x'
Guxe) = 1 | | (5.34)

m —I(k+_k,)x e|k+L a(XI,(,O)b(X’(D) for X > X'

with
i 2cL

Flo)=1+RoRee 7, (5.35a)
a(x,0) = Rg X+ e 7%, (5.35b)
b(x,0) = e*+* DR -0, (5.35¢)

Due to the pink term in (5.34), this Green's function does not satisfy reciprocity:
g(x,x',®) = g(x', x,0), unless k, —k_ =0, which is valid only for the case with zero
mean flow (u =0). The lack of reciprocity may be surprising, but it is plausible for a flow-
duct: if the source is upstream of the receiver, the emitted sound wave travels with the
flow; however, if the source and receiver are swapped over, the wave has to travel

against the flow.
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Appendix 5.3: Calculation of the time-domain Green's function

The time-domain Green's function g(x,x',t —t") is calculated from

GO X —1) = Zi [ §(xx, et do. (5.36)
n_

00
It must satisfy causality, i.e.
g(x,x,t—-t)=0 for t-t'<O. (5.37)
For t—t'>0, g must be a superposition of modes, and we now proceed to show this by

determining the integral in (5.36) with the residue theorem.

Equation (5.25) shows that g(x,x',®) has singularities at ® =0 and o = ®, (because
F(w,)=0), so the integrand in (5.36) has singularities at the same frequencies. Their

position in the complex plane is shown in figure 5.2.

Im o
z
=
4
8
G::’*.
E
| e
N
g
-Re ) ° ® ° ° R Re o
\'\ ©; 0 0 0
singular points r.

Figure 5.2. Singular points in the complex o-plane

For the integration path, we choose the closed curve composed of the real axis and the

semi-circular arc T'_ in the lower half-plane; this curve encloses all singular points.

Application of the residue theorem gives (the path is traversed in the negative direction,

hence the minus sign in —2mi)
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[ §xx,e)e™™ ) do=-21 > Res, [g(x,x',@)e—i@(t—t')}_

—®© Nn=—o
—lim [ §(x,x",0)e ") do. (5.38)
R—)oor

~— — -
—~—
=0

The integral along I'"_ is zero for t —t' > 0, because the exponential function tends to
zero as the radius of the semicircle tends to infinity,
eTlolt=t) - g il HoN-t) _ guiop (1) goitt) 0 a5 @ — —w. (5.39)
bounded
It now remains to calculate the residues of §(x,x",®)e ) We introduce the

abbreviation

~i(k, —k_)x ik, L _ 1 10X 2 —L

\|/(X,0))=—£e e e ¢c-u e CHu | (5.40)
Cc

and use (5.34) to write the residue term as

—io(t-t") _

(5.41)

o x0) i {w(x',w)b(x',m)a(x,co)ei“’(tt') for x <x'
g(x,x", m)e

20F (o) —io(t-t")

y(x',m)a(x',o)b(x,m)e for x>x'
This is a quotient, and the following general formula for the calculation of a residue can
be applied,
Res,, {P(m)}: P'(w”) : (5.42)
"Q(w) | Q'(wy)

Here, we have

Sio(t-t")

P(0) =i y(X',o)b(x', w)a(x,m)e | | for x <x' (5.43a)
w(x', o)a(x',m)b(x,m)e ) for x> x'
Q(w) = 20F (®) (5.43b)
Q'(oy) = 3—Q = [ZF(Q)) + 20F '(m)]mn =20,F '(0g) (5.43c)
This gives for the residue in (5.38)
Res, [..]- (X', 0 )e—i@n(t—t ) [b(x",05)a(x,m,) for x<x' (5.44)
n 20,F (o) a(x',op)b(x,0,) for x>x'

We insert this into (5.38) and subsequently into (5.36), to get the time-domain Green's

function
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g(x,x"\t—t") = 2—1n(—27ci) i Res,, [..]=

N=—o0

.

N=—o0 anF I((Dn)

© i\u(x',con)e_i"’n(t_t') b(x',o,)a(x,m,) for x<x'
a(x',o,)b(x,0,) for x>x'
S On(X X\ 0n) _ie,(t-t)
=y =mntoTnlgion ’ (5.45)
ne—o 20,F'(®,)
with
y(X' o4)b(X", 0 )a(X,m,) for x<x’

X' 0n) = 5.46
On (X" 0n) {\p(x',mn)a(x',con)b(x,mn) for x> x' ( )

The negative mode numbers in (5.45) can be eliminated. To this end, we split the sum

into three parts,

0

> :i +ZO:O +§:. (5.47)

Nn=—oo n=1 n=-1 n=0

We rewrite the sum over the negative mode numbers,

—00

z gn(X,XI',O)n) e—iwn(t—t )] _ i gn(X,X:,CO_n) e—im_n(t—t') . (548)
n=—1 2(DnF ((,On) n=1 2(0_nF ((,O_n)

As a consequence of

O_p =—0," (5.49)
(see [Heckl 2009]), we can use

gn (X, X", 0_n) =[gn (X, X",0,)]* (see Appendix 5.4), (5.50a)

F'(o_n)=—[F'(0,)]* (see Appendix 5.4), (5.50D)

and rewrite (5.48),

‘f 9n (X, X', ®n) -ion(t-t) _ {i gn(X,X',wn)e—imn(t—t')}*. (5.51)
n—1 20nF (o) n1 20pF'(on)

In other words, the sum over the negative mode numbers in (5.47) is the complex
conjugate of the sum over positive mode numbers.

The n =0 term is zero (see Appendix 5.5). We then get

B
n=1

opF (o)
23

>
1,018
=}
1,08

n=1

g(x,x',t-t") = § +{

(5.52)
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Appendix 5.4: Negative frequencies

O_p =—0, (5.53)
Reflection coefficients:
Ro(0_n) =Ro(-0n*) = [Ro (0 *)]* = [Ro(@n)] * (5.54)
see [Heckl 2009] ignore imag of o,
R (o_y)=...=[R (o)]* (5.55)
Function F(w):
i 2cL
F(w)=RoR e -0 —1 (5.56)
2L
2cL 0
F'lo )_| —RoR e ¢ U (5.57)
ool s 20k ool L 2cL *
. : ¥ N 2 2 . 2C N3 2
F'(o_n) =F'(-o;, )—' —Ro* R*e ¢ =2 RoR e ¢
—[F'(en)]” (5.58)
Wave numbers:
Ki(o_pn) =Ki(-op*) = U = —[ky (0n)]* (5.59)
Function g, (x,x",m,):
a(x,o_,) = Ry* e ik X gk *x _ [RO elkeX e—ik_x}* = [a(x, o )] * (5.60)
b(x,0_p) = etk (x-L) R.* ik * (x-L) _ [eik+(x—L)+ R, e_ik_(X_L)J* _ [b(x,0p,)]*
(5.61)
W(X,0_)=c e ik —kF)x =ik L _ [e—l(k+—k_)xe—ik+L:|* = [w(x,0,)]* (5.62)
Hence
. V¥ (X, 04)0* (X' 0)a*(x,0) for x<x'
gn (X, X" 0_,) = . '
y*(X,0p)a* (X', 0)b*(X,m) for x>Xx
=[9n (X, X", 000)]* (5.63)
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Appendix 5.5: Residue at we=0

The calculation of the residue of §(x,x",@)e ) in Appendix 5.3 is valid for =0, but
not for o =0. In this additional appendix, we calculate the residue for o =0 this

corresponds to n =0 in our notation, i.e. oy =0. We do this by expanding

(j(x,x',o))e_i“)(t_t ) into a Laurent series about o =0 ; the coefficient of o will then give

the required residue.

From (5.41), we know

iot—ty _ 1y(X' o) b(x',m)a(x,®)e ") for x <x'

g(x,x",0)e _ ‘ (5.64)
20F(0) | a(x", 0)b(x,0)e ) for x> x'
with
. 2cL
10>
F(w)=-1+RyR e ¢ -T° (5.65a)
. X . X
I— —
a(x,m)=Rgectu+e Cc-U, (5.65b)
i(1)(X—L) _ica(X—L)
b(x,0)=e ¢t +R e C-U | (5.65c¢)
o e
y(X,m) = —ie c?0% g cHl (5.65d)
c

We construct the Laurent series by expanding the individual terms in (5.65) into Taylor

series (in terms of ) and then insert these Taylor series into (5.64).

It is important to take into account that the reflection coefficients Ry and R also depend

on o, so we need an approximation for them that is valid for small . To this end, we
consider the reflection coefficient for an open tube end (derived by [Levine and
Schwinger 1948] )
1- [1(‘1) i(’io.6133]
R = 1 . (5.66)
1+[, ("L) _,70 6133]

where r is the radius of the tube. For small o, the term in the square brackets is small,

so R can be approximated as follows.
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Q

Sl 28 -(1- [...])2 ~ —{1— m(-izc—ro.ﬁlss)} =—(1- o). (5.67)

[ —
=a

2

In the last two steps of (5.67), we only included the linear o-term, but not the »“ - term;

also we introduced the abbreviation o for the constant term.

We can now describe the tube ends at x =0 and x =L by the approximated reflection
coefficients
RO =-1+ (Xo(l) y (568&)

RL =-1+ aL o, (568b)
for small frequencies; oy and o, are (complex) constants. This allows us to

approximate the expressions in (5.65) as follows.

F(0) =-1+(-1+ ogo)(-1+ O(,L(D)(l-i- m%) + O(wz) =
c“—-u

=-1+(1-ago-—a o+ aoocl_wz)(l+ ® szl_céz j +0(0?) =

2icL

c?_@?

=-1+(1-o0g0—-0 0)+® +0(w?) =

2 =2

:m[ﬂ—ao—al_j+0(co2) (5.69)
c —-u

+Uu c-u

a(x,o) =(-1+ aoco)(1+ CI(DX j + (1— I(Dx_j + O(ooz) =
=-1+ogm0— I(DX_ +1- I(DX_ +O(032) =
c+u c-u

:w(ao— x__ iX_]+O(w2) (5.70)
C+Uu cC—-u

b(X,m) = (1+ MJ +(-1+ aLm)(l—Mj+O(w2) =
C+Uu C—u

L do(x=L) L ie(x-L)

— +oc|_oo+0(c02)=
c+u c—u

=0{0LL Lx=l) i ‘_L)]m(mz) (5.71)
C+u C—-u
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WX o) = i{l-%j(l—i "’L_) +O(0?) =
C

cc—u c+u
:_1{1—0{ LI 'L_Hm(@z) (5.72)
c c2_0g% c+u
e =) 1 _je(t —t") + O(w?) (5.73)

The expansions (5.69) to (5.73) are now substituted into (5.64), omitting the terms

O(coz). For x < x', we get

Qogxzmkr@a4):
y [l— w(;ii'; + . il‘ﬁﬂw(oq + i(::ul_) + i(:'__ul_)}ﬂ(% e ij:a e ii(aj[l— io(t —t ')]
_E 0)0)[ 2icL o o J
c?-u? ot

(5.74)
The two factors o in the denominator cancel with those in the numerator, leaving a

series without negative powers of ® on the right hand side of (5.74). This series is the

required Laurent series; we can therefore conclude that the coefficient of o 1is zero.

Hence the residue at oy =0 is also zero.

The same result is obtained for x > x"'.

| hope that the same result would be obtained for closed tube ends, where Ry =R =+1,

but | have not had the time to check this.
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Appendix for Step 6: Determine the adjoint of g(x,x"',®)

The frequency-domain Green's function g(x,x',w) satisfies

A

2;\
02 (%, 0) + 2Ti0 3 + (2 ~52) 29 — _5(x - x) (6.1)
oX ox2

Multiply (6.1) by the test function é(x,x*,oo) (yet to be defined) and integrate

L -
[ ...G(x,x*,0)...dx. This leads to

x=0
L R L ag N L azg n L N
o [ §Gdx+2Tio [ =G dx+(c®-T%) | —Gdx=— | 3(x—x)G(x,x*0)dx (6.2)
x=0 x=0 Ox x=0 OX x=0
%,—J N~ ~ ~ - AV '
=1 =1, =-G(x', x*, )
L S A ~-L L -
L= | 9g dx=[gc;] - §2C ax (6.3)
x=0 OX x=0 x=0 X

X Jx-0 X x=0 X=0 ox?
(a5 8] b 9%

= G——é—:| + .[ é—z dx (64)
i OX OX «=0 X=0 OX

L L L 2
w? [ gGdx+2uio [QG] - | (jﬁ dx b+
x=0 x=0 = ox
s o[-0 .a6]" L 8%G A
+Hc-U )| G=-g— + [ g— dx};=-G(x', x* ) (6.5)
OX OX . ox2
o x=0
or
28
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|| =T

~ = 2 2
G| 026 - 2010 2 + (2 —UZ)E:I dx +

x=0 OX ox2
L o6 .aé]"
zaim[ge} +(c? —UZ){G—Q—Q—} = G(x', x*,0). (6.6)
x=0 OX OX
- x=0
=BT3
We define G by the following PDE:
~ S 2 S
sz(x,x*,m)—ZUioa§+(cz ~a?) o6 _ —§(X — X*). (6.7)
OX ox2
Then (6.6) leads to
L R
[ g(x,x",0)3(x —x*) dx - BT3 =G(x",x* ). (6.8)

x=0
We will define G further by imposing boundary conditions, which make the boundary

term BT3 disappear.

By comparing Egs. (6.1) and (6.7), we notice that g and G satisfy very similar PDEs:
they only differ by the sign of the mean flow velocity u .

Given that g has known expressions on either side of the point x' (see Appendix for

Step 5, Eq. (5.14))

io i®
—=X E—
. A_ (X, o)[RgettU +e Cc-U ] near x=0
g(xX,x",®) = : , (6.9)
Ii_x—L) —Ii_(x—L)
B, (X', w) [e ctu +R e ¢-u ] near x=L

we can construct a trial solution for G by changing the sign of u in the expressions

above for §, and allowing for different amplitudes (A_ instead of A_, and I_5>+ instead of

B, ):

i® io
~ —=X —QX
- A (X' o) [RgetU +e C+u ] near x=0
G(x,x',m) = : . (6.10)
- 'i_x—L —I&_(X—L)
B, (X', »)[ecU +R e c¢tu ] near x=L
29
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The derivatives of (6.9) and (6.10) are

1 o RN
. A (X', 0)io[——Ryectl ————e C-U ]
_g(x’x,,m): cC+u | c—-u -
ox R A S ~ 0 (x-1)
B+(X',(0) |O)[—_e c+u - _RLe ¢c-u
C+u c—-u
and
1 o _ o
G A (X',0)io[——Rye U ————e C+U ]
—(X,X',(D)Z c—-u - c+u -
o 1 2y e
B, (X,0) io[——ec¢U - _—_Re ¢+
c—-u c+u

We need to evaluate (6.9) — (6.12) at x =0 and x =L.

For x =0, we get

g(0,x",0) = A_(x",w)(Ry +1)

G(0,x",®) = A_(x",») (Rg +1)

8_9 =A (X, 0)io] 1_R0— 1_]
OX| x=0 c+u c—u
Bl LA (¢ o)io[——Ry - ——]
X, o c-u c+u

Then we get for the boundary at x =0 of the term BT3 in (6.6)
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(6.13b)
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(6.13d)



X= x=0

ool 68 2 g2y 45| _
[BT3] O_zuuw[ge} +(c u){eax GXLZO_

= 2TiwA_(x',0)A_(X',0)(Ry+1)2+

-‘r(CZ _UZ)A_(x‘,a))A_(X',c))ioa[(C iﬁ Ry — 2 iLG)(RO +1) - (R, +1)(C ilg R, — 16)} -

= A (X, o)A (X', 0)io(R, +1) {26(R0+1)+(02—GZ){( 1_R0— ! )—( 1_R0— 1_)}}20
c+u C

1 1 —-2u

c+u*_cfﬁ):(R0+l)C2,Jz

= (Ry +1)(

(6.14)

The same calculation can be done for the end at x =L, and the result is also zero.

Now G is completely defined: it has to satisfy the PDE (6.7) and the end conditions
(6.10).
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Appendix for Step 7: Find the relationship between G(x',x,t',t) and é(x',x,co)
G(x',x,t't) satisfies the PDE (see Eq. (7) in Step 4)

82G

e 0 —(c? - _2)——8(x X)3(t'=1) (7.1)

é(x',x,co) satisfies the PDE (see Eq. (6.7) in Appendix for Step 6)

~ 2 S
mZG(x',x,m)—ZinE+(cz—Uz)ﬁz—é(x'— X). (7.2)
ax' 8X|2

We propose the following "trial relationship",

Gt )= [ Gx.x0)e ™ de. (7.3)
2 PR
Then
G _1 j i0G(x',x,0)e ) gg, (7.4a)
ot' 2mn
2 ) R . .
oc_ 1 [ (~0®)G(x'x,0)e ) da, (7.4b)
ot 2m
2 0 S ,
06 _1 [ (@ eatt-t)gg, (7.4c)
o'ox 2m ., ox'
2 o
P61 T T gy (7.4d)
2 —2°
ox' 2710)__00 ox'
' L et - 1 7 —io(t—t")
We multiply (7.2) by e and then integrate 5 [ ... e do.
T oo
This leads to
1 0B xoe ™ Ve 202 [ 0l e gy
21 " 2n oo OX'
%G %G
ot 2 ot'ox'
%) 2~ . , 0 . ,
+(c2—az)i [ %G riot1) g = _5(x "= x)— [ et de. (7.5)
_ 5 0 2 21 " o
A2
:% = 5(t'-t)
oX'

We rewrite (7.5) as indicated by the blue terms and obtain
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°G __ &G
2u
ot'ox

2
- + '_(CZ_52)2(—2=5(x—x')5(t—t'). (7.6)

This agrees with (7.1), and therefore our test relationship in (7.3) has been validated.

We can conclude that G(x',x,t",t) and é(x',x,m) are a Fourier transform pair.
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Appendix for Step 8: Show that the boundary term BT2 in Step 3 is zero

T
BT2= | [ —"’—¢ - —‘2)(66"’ ¢aG)} dt (8.1)

t'=0 x'=0

For times t' outside the integration range, we can assume that

d(x',t) =0 fort'<0 (8.2a)
G(x',x,t't)=0 for t'>T, (8.2b)
Tn )
This allows us to extend the integration limits from [ to |
t'=0 t'=—c0

We now focus on the integration with respectto t'.
Since ¢(x',t") and G(x',x,t',t) are given by
[} 1 T n 1 —iot'
d(x',t ):2— j d(x", e ™ do (8.3a)
W=—000

=l

G(x',x,t',t) = G(x',x,®)e 1) dg (8.3b)

each of the product terms

8 8 oG
d) (I)_ ’ d) ¢_
in (8.1) is a double integral of the form j j ... dodw . Each integrand of these
W=—0 @O=—
double integrals has the same time-dependence, gm0t g IO(I-t) _ gi6t g-i(@-d)t"

which can be integrated with respectto t'.

] pit gmi(O-B)t' gy _ it | e OO = 7O 275(r — @) (8.4)

t'=—0 t'=—0

As a consequence of the term &(w— ®) in the double integral over » and @ reduces to a
single integral over . This allows us to consider a single frequency component of ¢

and G,
b (X',1) = §(x",w)e " (8.5)
G, (X', x,t't) =G(x",x,»)e @t (8.6)

when calculating the product terms.
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We first consider the boundary at x'=0. Near there we have (see Eq. (5) for ¢, and Eq.

(17) for G,)
(I)(D(X',t l) — A_(Roeik+X| + e—ik_X') e—i(l\)tI

% — (—|(,0)A_(R0elk+x‘ + e—ik_X') e—i(,l)t'

% = A_(ik,Rpe"+* —ik_e X"y gt
X

Gy (X', X,t',1) = A_(X, 0)(Rge X + e KXy gmiat-t)

aaGt(:‘) _ (l(D)A_(X,(D)(ROeIk_X' + e—ik+X') e—|(,l)(t—t I)
_aac;(? = A_(x,0)(ik_Rge™ > —ik e ") g7o(t=t)
X

We evaluate (8.7) and (8.8) at x'=0 to get

¢m(X',t')|X,=O = A—(RO +1) e—i(;)t'

Bl _ —imA_(Rg +1) et
ot' x'=0

Bol  _ A (k,Ry—ik_)e
OX' |x'=0

Gm(XI,X,t',t)|X.=O = A_(X,CO)(RO +l) e—i(x)(t—t')

aG(.D = (im)A_(x,@)(Ro +1) g io(t-t)
at' Iy—o

aGcio_ = A_(x,0)(ik_Ry —ik,) e @-1)
OX" |x'=0

Then the integrand in (8.1) becomes at x'=0
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(8.7a)

(8.7b)

(8.7¢)

(8.8a)

(8.8b)

(8.8¢)

(8.9a)

(8.9b)

(8.9¢)

(8.10a)

(8.10b)

(8.10c)



{U(G Do g, 20)- (-G, 224, )} -
=G[ ARy +1)(-i0) A_(Ry +1) - A_(Rg +1)(iw) A_(Ry +1) [e " 'e (1) —
(2 ~T?)[ A (Ry +1) A (i, R —ik )~ A (Rg +DA _(ik Ry —ik,) Je e olt-1) -

= AA_(Ry+De ! [J(—zim)(Ro +1)— (c2 - T2)(ik, Ry —ik_ —ik_Rg + ik, ﬂ -

—~—

=Ry (ik, —ik_)+ik, —ik_ = (Rg +1)(ik, —ik_)

= AA_(Ry +1)2e it [-2@& —(c2-T?)(k, - ik_)} -0 (8.11)
——
20

c? -2

=l
The same calculation can be done for the boundary at x'=L, and the result is also zero.
To summarize, we have shown that

BT2=0 (8.12)
in EqQ. (6).
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Appendix for Step 9: Find the relationship between g and G
g(x,x"t,t") satisfies the PDE (see Eq. (10))

2 2 2
09 2599 (2 -52)%9 _5ix—x st —t) 9.1)
ot otox ox2

and the causality condition (see Eq. (11a))
g(x,x,t—-t)=0 for t<t'. (9.2)

© L
We multiply (9.1) by G(x,x*,t,t*) and integrate [ | ...G(x,x*t,t*)...dtdx. This

t=—c0 x=0
gives
0 L 2 00 L 2 0 L 2
I Zedtax+20 [ | Scatdx—(c?-a?) [ | Zadxdi-
t=—o Xx=0 ot D t=—0 x=0 Otox B t=—0 x=0 OX B
-1 -7, i1
o0 L
= [ [ 8(x=x"3(t-t)G(x, x*t,t*)dxdt (9.3)
t=—00 x=0

:E(x',x*,t',t*)
The three integrals I, I,, I3, can be rewritten with integration by parts. The result for I;
IS
1= T [%G—%—fgr dx + T i 962—deth 9.4)
x=0 t=—o0 X=0 t=—oo Ot
I, can be manipulated in two different ways: integrate first with respect to t and then x,
or vice versa. The first way gives

L o0 © L 0 L 2
I, = {a—gG} dx— | {g ﬁ} dt+ [ gﬁdxdt : (9.5a)
ot x=0 t=—0 x=0 Otox

t=—o0 t=—00

The second way gives

- © L L o L © 2
=] [a—gG} dt— [ [QE} ac+ [ [ 9%Cddx.  (9.5)
t=—w at x=0 x=0 ax t=—o0 X=0 t=—o0 ataX
The result for I3 is
o0 L o0 L 2
Ii= | {a_gG—gﬁ} dt+ [ A (;dxdt . (9.6)
te—oo LOX X lx=0  t——o x=0 OX

We now substitute (9.4) — (9.6) into (9.3).
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G(X', x*,t"t*) = I, + 20T, — (c® —1?%) I3 =

= ‘Il+U‘IZ +Uj2 —(C2 —UZ)I?) =

52 2
:lf j g(xxt—t){ G 2uaG

2
—@2—T52%1mdx+
OX

= 3(t —t*)3(X — x*)

L o0 o0 o0
+ | F—gG—ﬁg} +U[a—gG} —U[g@} dx +
x=0 |LOt 2/ P 2 QN P X Jt—op

0 L L L
+ —UP§91 +JFEG} —{&—U%FEG—QQ?} dt =
e &t |y o ot o ox X | 4o

_BT4
b F@Q-ﬁﬁjmz {wegga} dt 9.7)
t=—c0 ot 2 x=0
_BTS

We will get a meaningful result if we can show that the boundary terms BT4 and BT5
are zero. In order to determine BT4, we use the causality condition and terminal
condition. From the causality condition (9.2), we can conclude that

g(x,x,t-t)=0 for t=-oo0, (9.8)
because t' is finite. From the terminal condition, which we extended in (8.2), we can
conclude that

G(x,x*t,t*)=0 for t=o0, (9.9)
because T, is finite. As a consequence of (9.8) and (9.9),

BT4=0. (9.10)
The term BT5 in (9.7) is analogous to the term BT2 in (8.1), with g in place of ¢.

In the frequency domain, g and ¢ have the same wave numbers (k, for forward

travelling waves; k_ for backward travelling waves) and the same boundary conditions at
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the tube ends x =0, L . Hence the method applied in Step 8 can be applied again in this

case, leading to

BT5=0. (9.11)
We can now conclude from (9.7), (9.10) and (9.11) that
G(x', x,t"t)=g(x,x"t,t"). (9.12)

This result expresses the reciprocity between the direct and adjoint Green's function

[Morse and Feshbach 1953, section 7.5]. We note that neither G, nor g, are symmetric,
g(x, x" t—=t") = g(x',xt'-t), (9.13)
G(x" x,t'-t) #G(x,x"t —t). (9.14)
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Appendix for Step 11: Fix the terminal time
The integral equation (9) reduces with BT2 = 0(see Appendix for Step 8) to

y-17 P B oG oG
¢(x,t)=—?t{0 G(xg,x,t',1)q(t")dt +{(p 0 G(X", x,t"t)— g (Eﬂjgﬂx ‘" (11.1)

Given that G =0 for all times t >t', the integrand is zero in the range t'=t,...T,. This
suggests that the upper integration boundary should be changed from T, to t.

The final version of the integral equation is

r-1

o(x,1) = ——
P o

| —

G(Xq, x,t',t)q(t")dt "+ [(p'o G(x', x,t"t) — g [§+ Uﬁﬂ , (11.2)
0 atl X X :Xq
t'=0
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